

PN5138

PNP General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA. Sourced from Process 68. See PN200 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	30	V
V _{CBO}	Collector-Base Voltage	30	V
V _{EBO}	Emitter-Base Voltage	5.0	V
Ic	Collector Current - Continuous	500	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units
		PN5138	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

PNP General Purpose Amplifier (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage*	$I_C = 10 \text{ mA}, I_B = 0$	30		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 100 \mu A, I_E = 0$	30		V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 100 \mu A, I_C = 0$	5.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 20 \text{ V}, I_E = 0$ $V_{CB} = 20 \text{ V}, I_E = 0, T_A = 65 ^{\circ}\text{C}$		50 3.0	nA μA
h _{FE}	DC Current Gain	$V_{CE} = 10 \text{ V}, I_{C} = 0.1 \mu\text{A}$ $V_{CE} = 10 \text{ V}, I_{C} = 1.0 m\text{A}$ $V_{CE} = 10 \text{ V}, I_{C} = 10 m\text{A}$	50 50 50	800	
			50		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$		0.3	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$		1.0	V
V _{BE(on)}	Base-Emitter On Voltage	$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}$		1.0	V
SMALL S	IGNAL CHARACTERISTICS				
C _{ob}	Output Capacitance	$V_{CB} = 5.0 \text{ V}, f = 1.0 \text{ MHz}$		7.0	pF
C _{ib}	Input Capacitance	V _{EB} = 0.5 V, f = 1.0 MHz		30	pF
h _{fe}	Small-Signal Current Gain	$I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 1.0 kHz $I_C = 0.5 \text{ mA}, V_{CE} = 5.0 \text{ V},$	40	1000	
		f = 20 MHz	1.5	1	1

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%