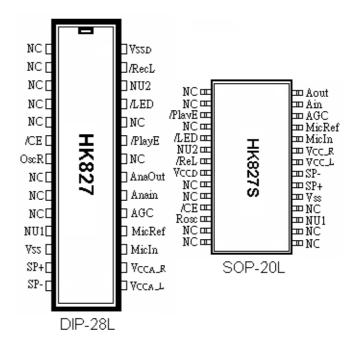
VOICE RECORD/PLAYBACK IC

20-30 SEC. TIME CAPACITY

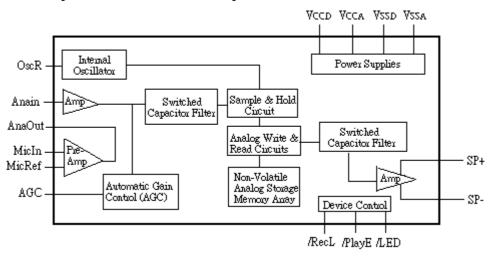
Features

- ★ Single-chip , high-quality voice recording & playback solution
 - No external ICs required
 - Minimum external components
- ★ Non-volatile Flash memory technology
 - No battery backup required
 - 100,000 times record cycles (typical)
 - 100-years message retention (typical)
- ★ Single message of 20 to 30 seconds , with external resistor selection


- ★ User-friendly , easy-to-use operation
 - Programming & development systems not required
 - Level-activated recording & edge-activated playback switches
- **★** Low power consumption
 - Operating current : 25 mA (typical, no load)
 - Standby current : 1 µA (typical , no load)
- * Automatic power-down feature for longer battery life
- ★ Chip Enable pin for simple message expansion
- **★** Single 5V for power supply

General Description

The HK827device offers true single-chip solid-state storage capability and requires no software or micro-controller support. It provides high-quality recording and playback with a single 20-to 30-second message. It is ideal for portable voice recorders , toys, and many other consumer and industrial applications .


HONSITAK ELECTRONICS proprietary analog / multi-level volatile memory cells , each of which can typically store storage technology is implemented in advanced Flash nonmore than 256 voltage levels . The HK827 device stores and reproduces voice signals in their natural forms , eliminating the distortion that is often introduced by encoding and compression. The device combines a small size with low power consumption , non-volatility , and ease-of-use for a cost-effective solution to voice recording and playback.

PinOut Diagram

Block Diagram

Figure 2 shows the function block diagram

Function Description

Figure 3 shows the diagram for a single, 20-second message recording and playback application using the HK827 device. When pins are connected as shown in this example, the operating modes are as follows:

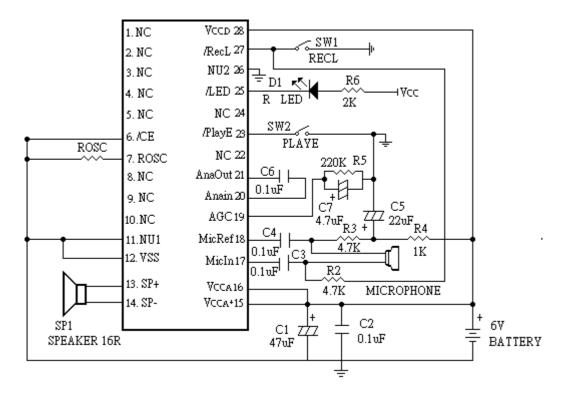
Record Mode (Level-Activated)

The /LED pin will go low during the actual recording process to provide a visual indication if an LED light is connected to this pin . A single voice message of up to 20 seconds can be recorded . The chip is in record mode as long as the /RecL pin stays low (level-activated) . If the message lasts longer than 20 seconds, recording will terminate automatically after the last available memory cell is written . If the message is shorter than 20 seconds, the recording operation will stop when the /RecL pin goes high . The speaker driver is automatically tri-stated during the recording operation . Messages of up to 30 seconds can be recorded by using different OscR resistor values (see Table 1).

Power Down Mode (/CE="1")

The chip is always in standby state . No recording or playback is allowed . Current consumption is typically less than 1 μ A .

Playback Mode (Edge-Activated)


Playback always starts from the beginning of the message . The chip is in playback mode after the /PlayE pin pulses low (edge-activated) . Playback will stop immediately when the /PlayE pin pulses low a second time . If the newly recorded message is shorter than the previously recorded message , the remaining portion of the previous message will be played after the new message is played back . The input pre-amplifier, AGC and main amplifier circuits are disabled during playback .

Standby Mode (/CE="0")

The chip will automatically return to the standby state after recording or playback operating is completed.

VOICE RECORD/PLAYBACK IC

Figure 3 shows the application circuit

NC = No Connect (must be floating)

NU = Not Used (must be grounded)

Pins 23 and 27 have internal pull-up resistors.

The typical sampling frequency is 6.4 kHz with OscR = 52 K Ω .

Table 1. Typical Dependence of Sampling Frequency and Total Voice Duration on OscR Resistor Value ($V_{CCA} = V_{CCD} = 5V$; $V_{SSA} = V_{SSD} = 0 V$; $T_A = 25^{\circ}C$)

Pin 7 – OscR	Typical Sampling Frequency	Typical Total Voice Duration
52k Ω	6.4 kHz	20 seconds
67kΩ	5.3 kHz	24 seconds
89k Ω	4.0 kHz	30 seconds

VOICE RECORD/PLAYBACK IC

20-30 SEC. TIME CAPACITY

Electrical Characteristics

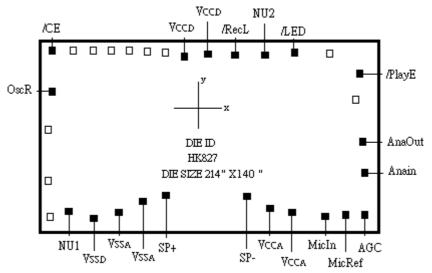
Absolute maximum Ratings

Item	Sym.	Condition	Min	Тур.	Max	Unit
Power supply voltage	V _{CC}	T _A = 25°C	3.8	6.0	7.0	V
Input voltage	V _{IN1}	T _A =25°C	-0.3	-	V _{CC} + 0.3	V
Input voltage	V _{IN2}	I I _{IN} I < 20 mA	-1.0	-	V _{CC} + 1.0	V
Storage temperature	T_{STG}	-	-65	25	150	$^{\circ}\!\mathbb{C}$
Temperature under bias	T _{BS}	-	-65	25	125	$^{\circ}\mathbb{C}$
Lead temperature	T _{LD}	< 10 s	-0.3	25	300	$^{\circ}\!\mathbb{C}$

DC Characteristics*

Item	Sym.	Condition	Min	Тур.	Max	Unit
Input high voltage	V _{IH}	-	0.8*VCC	-	-	V
Input low voltage	V_{IL}	-	-	-	0.8	V
Output high voltage	V _{OH}	I _{OH} = -1.6 mA	2.4	-	-	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	-	-	0.45	V
Input leakage current	I _{IH}	$V_{IH} = V_{CC}$	-	-	1.0	μA
Input leakage current	I _{IL}	$V_{IL} = V_{CC}$	-1.0	-	-	μA
Output tristate Leakage current	l _{oz}	$V_{OUT} = V_{CC}$ or $V_{OUT} = V_{SS}$	-1.0	-	1 .0	μА
Operating current Consumption	I _{cc}	Internal Clock, no load	-	25	-	mA
Standby current consumption	I _{ccs}	No load	-	1.0	-	μΑ

Analog Characteristics*

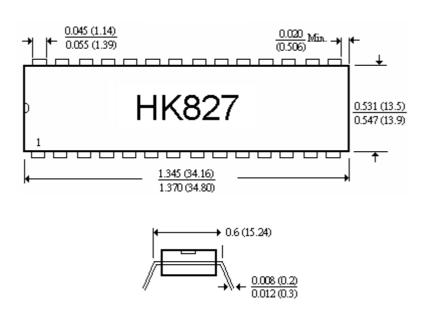

Item	Sym.	Condition	Min	Тур.	Max	Unit
Micln input voltage	V_{MI}	-	-	-	20	mVp-p
MicIn input resistance	R _{MI}	-	-	10	-	ΚΩ
Micln amp gain (1)	G _{MI1}	AGC = 0 V	-	24	-	dB
Micln amp gain (2)	G _{MI2}	AGC = 2.5 V	-	-45	-15	dB
Analn input voltage	V_{ANI}	-	-	-	50	mVp-p
Anain input resistance	R _{ANI}	-	-	10	-	ΚΩ
Analn amp gain	G_{ANI}	Analn to SP +/-	-	22	-	DB
AGC output resistance	R _{AGC}	-	-	1	-	ΚΩ
Sp +/- output power	P_{sp}	R_{SP} +/- = 16 Ω	-	12.2	-	mW
Voltage amplitude across SP +/-	Vsp	R _{SP} ≱/16 Ω	-	1.25	-	Vp-p

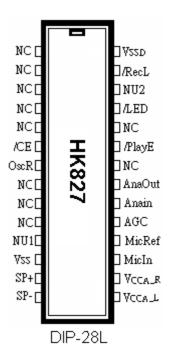
Typical Values : Vccd = VccA = 5V ; Vssd = VssA = 0V ; $TA = 25^{\circ}C$

VOICE RECORD/PLAYBACK IC

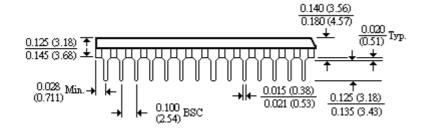
Bonding Pad Diagram & Description Of Bonding Pad Coordinates

Figure 4 shows the die bonding pad

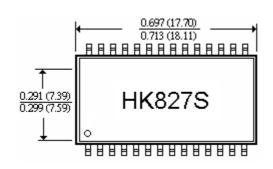

Substrate must be connected to VssD & VssA_L & VssA_R

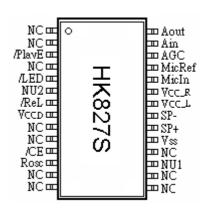

Pin	Pin Name	X Axis*	Y Axis*
/CE	Chip enable	-2496.20	1565.80
OscR	Oscillator frequency-setting resistor	-2459.55	729.80
NU1	Connect to ground	-1808.45	-1496.10
V_{SSD}	Digital ground supply	-1564.05	-1572.00
V_{SSA}	Analog ground supply	-1384.05	-1548.70
V_{SSA}	Analog ground supply	-1204.35	-1477.10
SP+	Non-inverting speaker output	-707.15	-1390.00
SP-	Inverting speaker output	479.15	-1389.90
V _{CCA}	Analog power supply	976.45	-1492.00
V _{CCA}	Analog power supply	1190.40	-1523.70
MicIn	Microphone input	1619.45	-1551.40
MicRef	Microphone reference input	2035.45	-1551.40
AGC	Automatic gain control	2487.45	-1551.40
Analn	Analog signal input	2487.45	-1049.90
AnaOut	Analog signal output	2487.45	-949.90
/PlayE	Edge-activated playback	2493.65	1371.10
/LED	LED output	1430.70	1565.80
NU2	Connect to ground	865.75	1565.80
/RecL	Level-activated record	258.15	1565.80
V _{CCD}	Digital power supply	-229.40	1579.05
V _{CCD}	Digital power supply	-510.80	1541.60

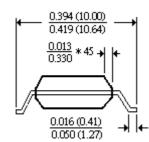
20-30 SEC. TIME CAPACITY

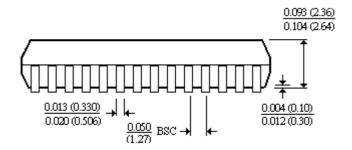

Package Outlines

The HK827 device is available in the DIP and SOP package forms, Packages conform to JEDEC and EIAJ standards.




(A) 28-Pin Plastic Dual In-Line Package (DIP-28L, P-600)




VOICE RECORD/PLAYBACK IC

(B) 28-Pin Plastic Small-Outline Integrated Circuit (SOP-28L)

